↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
in_order_in_ag(void, []) → in_order_out_ag(void, [])
in_order_in_ag(tree(X, Left, Right), Xs) → U1_ag(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
U1_ag(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_ag(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_ag(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_ag(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U4_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U4_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Left, Right, Xs, app_out_aag(Ls, .(X, Rs), Xs)) → in_order_out_ag(tree(X, Left, Right), Xs)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
in_order_in_ag(void, []) → in_order_out_ag(void, [])
in_order_in_ag(tree(X, Left, Right), Xs) → U1_ag(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
U1_ag(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_ag(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_ag(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_ag(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U4_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U4_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Left, Right, Xs, app_out_aag(Ls, .(X, Rs), Xs)) → in_order_out_ag(tree(X, Left, Right), Xs)
IN_ORDER_IN_AG(tree(X, Left, Right), Xs) → U1_AG(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
IN_ORDER_IN_AG(tree(X, Left, Right), Xs) → IN_ORDER_IN_AA(Left, Ls)
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → U1_AA(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → IN_ORDER_IN_AA(Left, Ls)
U1_AA(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_AA(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U1_AA(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → IN_ORDER_IN_AA(Right, Rs)
U2_AA(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_AA(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
U2_AA(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → APP_IN_AAA(Ls, .(X, Rs), Xs)
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → U4_AAA(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
U1_AG(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_AG(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U1_AG(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → IN_ORDER_IN_AA(Right, Rs)
U2_AG(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_AG(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
U2_AG(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → APP_IN_AAG(Ls, .(X, Rs), Xs)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U4_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
in_order_in_ag(void, []) → in_order_out_ag(void, [])
in_order_in_ag(tree(X, Left, Right), Xs) → U1_ag(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
U1_ag(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_ag(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_ag(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_ag(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U4_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U4_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Left, Right, Xs, app_out_aag(Ls, .(X, Rs), Xs)) → in_order_out_ag(tree(X, Left, Right), Xs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
IN_ORDER_IN_AG(tree(X, Left, Right), Xs) → U1_AG(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
IN_ORDER_IN_AG(tree(X, Left, Right), Xs) → IN_ORDER_IN_AA(Left, Ls)
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → U1_AA(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → IN_ORDER_IN_AA(Left, Ls)
U1_AA(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_AA(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U1_AA(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → IN_ORDER_IN_AA(Right, Rs)
U2_AA(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_AA(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
U2_AA(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → APP_IN_AAA(Ls, .(X, Rs), Xs)
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → U4_AAA(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
U1_AG(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_AG(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U1_AG(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → IN_ORDER_IN_AA(Right, Rs)
U2_AG(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_AG(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
U2_AG(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → APP_IN_AAG(Ls, .(X, Rs), Xs)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U4_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
in_order_in_ag(void, []) → in_order_out_ag(void, [])
in_order_in_ag(tree(X, Left, Right), Xs) → U1_ag(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
U1_ag(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_ag(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_ag(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_ag(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U4_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U4_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Left, Right, Xs, app_out_aag(Ls, .(X, Rs), Xs)) → in_order_out_ag(tree(X, Left, Right), Xs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
in_order_in_ag(void, []) → in_order_out_ag(void, [])
in_order_in_ag(tree(X, Left, Right), Xs) → U1_ag(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
U1_ag(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_ag(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_ag(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_ag(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U4_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U4_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Left, Right, Xs, app_out_aag(Ls, .(X, Rs), Xs)) → in_order_out_ag(tree(X, Left, Right), Xs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
APP_IN_AAG(.(X, Zs)) → APP_IN_AAG(Zs)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
in_order_in_ag(void, []) → in_order_out_ag(void, [])
in_order_in_ag(tree(X, Left, Right), Xs) → U1_ag(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
U1_ag(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_ag(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_ag(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_ag(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U4_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U4_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Left, Right, Xs, app_out_aag(Ls, .(X, Rs), Xs)) → in_order_out_ag(tree(X, Left, Right), Xs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
↳ PiDP
↳ PrologToPiTRSProof
APP_IN_AAA → APP_IN_AAA
APP_IN_AAA → APP_IN_AAA
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
U1_AA(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → IN_ORDER_IN_AA(Right, Rs)
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → IN_ORDER_IN_AA(Left, Ls)
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → U1_AA(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_ag(void, []) → in_order_out_ag(void, [])
in_order_in_ag(tree(X, Left, Right), Xs) → U1_ag(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
U1_ag(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_ag(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_ag(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_ag(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U4_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U4_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Left, Right, Xs, app_out_aag(Ls, .(X, Rs), Xs)) → in_order_out_ag(tree(X, Left, Right), Xs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
U1_AA(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → IN_ORDER_IN_AA(Right, Rs)
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → IN_ORDER_IN_AA(Left, Ls)
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → U1_AA(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ PrologToPiTRSProof
IN_ORDER_IN_AA → U1_AA(in_order_in_aa)
IN_ORDER_IN_AA → IN_ORDER_IN_AA
U1_AA(in_order_out_aa) → IN_ORDER_IN_AA
in_order_in_aa → in_order_out_aa
in_order_in_aa → U1_aa(in_order_in_aa)
U1_aa(in_order_out_aa) → U2_aa(in_order_in_aa)
U2_aa(in_order_out_aa) → U3_aa(app_in_aaa)
U3_aa(app_out_aaa) → in_order_out_aa
app_in_aaa → app_out_aaa
app_in_aaa → U4_aaa(app_in_aaa)
U4_aaa(app_out_aaa) → app_out_aaa
in_order_in_aa
U1_aa(x0)
U2_aa(x0)
U3_aa(x0)
app_in_aaa
U4_aaa(x0)
IN_ORDER_IN_AA → U1_AA(U1_aa(in_order_in_aa))
IN_ORDER_IN_AA → U1_AA(in_order_out_aa)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ NonTerminationProof
↳ PrologToPiTRSProof
IN_ORDER_IN_AA → U1_AA(U1_aa(in_order_in_aa))
IN_ORDER_IN_AA → U1_AA(in_order_out_aa)
IN_ORDER_IN_AA → IN_ORDER_IN_AA
U1_AA(in_order_out_aa) → IN_ORDER_IN_AA
in_order_in_aa → in_order_out_aa
in_order_in_aa → U1_aa(in_order_in_aa)
U1_aa(in_order_out_aa) → U2_aa(in_order_in_aa)
U2_aa(in_order_out_aa) → U3_aa(app_in_aaa)
U3_aa(app_out_aaa) → in_order_out_aa
app_in_aaa → app_out_aaa
app_in_aaa → U4_aaa(app_in_aaa)
U4_aaa(app_out_aaa) → app_out_aaa
in_order_in_aa
U1_aa(x0)
U2_aa(x0)
U3_aa(x0)
app_in_aaa
U4_aaa(x0)
IN_ORDER_IN_AA → U1_AA(U1_aa(in_order_in_aa))
IN_ORDER_IN_AA → U1_AA(in_order_out_aa)
IN_ORDER_IN_AA → IN_ORDER_IN_AA
U1_AA(in_order_out_aa) → IN_ORDER_IN_AA
in_order_in_aa → in_order_out_aa
in_order_in_aa → U1_aa(in_order_in_aa)
U1_aa(in_order_out_aa) → U2_aa(in_order_in_aa)
U2_aa(in_order_out_aa) → U3_aa(app_in_aaa)
U3_aa(app_out_aaa) → in_order_out_aa
app_in_aaa → app_out_aaa
app_in_aaa → U4_aaa(app_in_aaa)
U4_aaa(app_out_aaa) → app_out_aaa
in_order_in_ag(void, []) → in_order_out_ag(void, [])
in_order_in_ag(tree(X, Left, Right), Xs) → U1_ag(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
U1_ag(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_ag(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_ag(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_ag(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U4_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U4_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Left, Right, Xs, app_out_aag(Ls, .(X, Rs), Xs)) → in_order_out_ag(tree(X, Left, Right), Xs)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
in_order_in_ag(void, []) → in_order_out_ag(void, [])
in_order_in_ag(tree(X, Left, Right), Xs) → U1_ag(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
U1_ag(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_ag(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_ag(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_ag(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U4_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U4_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Left, Right, Xs, app_out_aag(Ls, .(X, Rs), Xs)) → in_order_out_ag(tree(X, Left, Right), Xs)
IN_ORDER_IN_AG(tree(X, Left, Right), Xs) → U1_AG(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
IN_ORDER_IN_AG(tree(X, Left, Right), Xs) → IN_ORDER_IN_AA(Left, Ls)
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → U1_AA(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → IN_ORDER_IN_AA(Left, Ls)
U1_AA(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_AA(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U1_AA(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → IN_ORDER_IN_AA(Right, Rs)
U2_AA(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_AA(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
U2_AA(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → APP_IN_AAA(Ls, .(X, Rs), Xs)
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → U4_AAA(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
U1_AG(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_AG(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U1_AG(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → IN_ORDER_IN_AA(Right, Rs)
U2_AG(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_AG(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
U2_AG(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → APP_IN_AAG(Ls, .(X, Rs), Xs)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U4_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
in_order_in_ag(void, []) → in_order_out_ag(void, [])
in_order_in_ag(tree(X, Left, Right), Xs) → U1_ag(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
U1_ag(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_ag(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_ag(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_ag(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U4_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U4_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Left, Right, Xs, app_out_aag(Ls, .(X, Rs), Xs)) → in_order_out_ag(tree(X, Left, Right), Xs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
IN_ORDER_IN_AG(tree(X, Left, Right), Xs) → U1_AG(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
IN_ORDER_IN_AG(tree(X, Left, Right), Xs) → IN_ORDER_IN_AA(Left, Ls)
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → U1_AA(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → IN_ORDER_IN_AA(Left, Ls)
U1_AA(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_AA(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U1_AA(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → IN_ORDER_IN_AA(Right, Rs)
U2_AA(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_AA(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
U2_AA(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → APP_IN_AAA(Ls, .(X, Rs), Xs)
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → U4_AAA(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
U1_AG(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_AG(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U1_AG(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → IN_ORDER_IN_AA(Right, Rs)
U2_AG(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_AG(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
U2_AG(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → APP_IN_AAG(Ls, .(X, Rs), Xs)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U4_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
in_order_in_ag(void, []) → in_order_out_ag(void, [])
in_order_in_ag(tree(X, Left, Right), Xs) → U1_ag(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
U1_ag(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_ag(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_ag(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_ag(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U4_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U4_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Left, Right, Xs, app_out_aag(Ls, .(X, Rs), Xs)) → in_order_out_ag(tree(X, Left, Right), Xs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
in_order_in_ag(void, []) → in_order_out_ag(void, [])
in_order_in_ag(tree(X, Left, Right), Xs) → U1_ag(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
U1_ag(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_ag(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_ag(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_ag(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U4_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U4_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Left, Right, Xs, app_out_aag(Ls, .(X, Rs), Xs)) → in_order_out_ag(tree(X, Left, Right), Xs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
APP_IN_AAG(.(X, Zs)) → APP_IN_AAG(Zs)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
in_order_in_ag(void, []) → in_order_out_ag(void, [])
in_order_in_ag(tree(X, Left, Right), Xs) → U1_ag(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
U1_ag(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_ag(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_ag(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_ag(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U4_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U4_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Left, Right, Xs, app_out_aag(Ls, .(X, Rs), Xs)) → in_order_out_ag(tree(X, Left, Right), Xs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
↳ PiDP
APP_IN_AAA → APP_IN_AAA
APP_IN_AAA → APP_IN_AAA
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
U1_AA(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → IN_ORDER_IN_AA(Right, Rs)
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → IN_ORDER_IN_AA(Left, Ls)
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → U1_AA(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_ag(void, []) → in_order_out_ag(void, [])
in_order_in_ag(tree(X, Left, Right), Xs) → U1_ag(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
U1_ag(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_ag(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_ag(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_ag(X, Left, Right, Xs, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U4_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U4_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Left, Right, Xs, app_out_aag(Ls, .(X, Rs), Xs)) → in_order_out_ag(tree(X, Left, Right), Xs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
U1_AA(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → IN_ORDER_IN_AA(Right, Rs)
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → IN_ORDER_IN_AA(Left, Ls)
IN_ORDER_IN_AA(tree(X, Left, Right), Xs) → U1_AA(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
in_order_in_aa(void, []) → in_order_out_aa(void, [])
in_order_in_aa(tree(X, Left, Right), Xs) → U1_aa(X, Left, Right, Xs, in_order_in_aa(Left, Ls))
U1_aa(X, Left, Right, Xs, in_order_out_aa(Left, Ls)) → U2_aa(X, Left, Right, Xs, Ls, in_order_in_aa(Right, Rs))
U2_aa(X, Left, Right, Xs, Ls, in_order_out_aa(Right, Rs)) → U3_aa(X, Left, Right, Xs, app_in_aaa(Ls, .(X, Rs), Xs))
U3_aa(X, Left, Right, Xs, app_out_aaa(Ls, .(X, Rs), Xs)) → in_order_out_aa(tree(X, Left, Right), Xs)
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U4_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U4_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
IN_ORDER_IN_AA → U1_AA(in_order_in_aa)
IN_ORDER_IN_AA → IN_ORDER_IN_AA
U1_AA(in_order_out_aa) → IN_ORDER_IN_AA
in_order_in_aa → in_order_out_aa
in_order_in_aa → U1_aa(in_order_in_aa)
U1_aa(in_order_out_aa) → U2_aa(in_order_in_aa)
U2_aa(in_order_out_aa) → U3_aa(app_in_aaa)
U3_aa(app_out_aaa) → in_order_out_aa
app_in_aaa → app_out_aaa
app_in_aaa → U4_aaa(app_in_aaa)
U4_aaa(app_out_aaa) → app_out_aaa
in_order_in_aa
U1_aa(x0)
U2_aa(x0)
U3_aa(x0)
app_in_aaa
U4_aaa(x0)
IN_ORDER_IN_AA → U1_AA(U1_aa(in_order_in_aa))
IN_ORDER_IN_AA → U1_AA(in_order_out_aa)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ NonTerminationProof
IN_ORDER_IN_AA → U1_AA(U1_aa(in_order_in_aa))
IN_ORDER_IN_AA → U1_AA(in_order_out_aa)
IN_ORDER_IN_AA → IN_ORDER_IN_AA
U1_AA(in_order_out_aa) → IN_ORDER_IN_AA
in_order_in_aa → in_order_out_aa
in_order_in_aa → U1_aa(in_order_in_aa)
U1_aa(in_order_out_aa) → U2_aa(in_order_in_aa)
U2_aa(in_order_out_aa) → U3_aa(app_in_aaa)
U3_aa(app_out_aaa) → in_order_out_aa
app_in_aaa → app_out_aaa
app_in_aaa → U4_aaa(app_in_aaa)
U4_aaa(app_out_aaa) → app_out_aaa
in_order_in_aa
U1_aa(x0)
U2_aa(x0)
U3_aa(x0)
app_in_aaa
U4_aaa(x0)
IN_ORDER_IN_AA → U1_AA(U1_aa(in_order_in_aa))
IN_ORDER_IN_AA → U1_AA(in_order_out_aa)
IN_ORDER_IN_AA → IN_ORDER_IN_AA
U1_AA(in_order_out_aa) → IN_ORDER_IN_AA
in_order_in_aa → in_order_out_aa
in_order_in_aa → U1_aa(in_order_in_aa)
U1_aa(in_order_out_aa) → U2_aa(in_order_in_aa)
U2_aa(in_order_out_aa) → U3_aa(app_in_aaa)
U3_aa(app_out_aaa) → in_order_out_aa
app_in_aaa → app_out_aaa
app_in_aaa → U4_aaa(app_in_aaa)
U4_aaa(app_out_aaa) → app_out_aaa